Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$

نویسندگان

  • N.L. Matiadou Department of Electronics Engineering, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece
  • Perikles Papadopoulos Department of Electronics Engineering, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece
چکیده مقاله:

We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions  $ u(x,0) = u_0 (x)$  and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ;  f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to study the long time behaviour of the solution of this equation. Here, we prove the existence of a global attractor for this equation in the strong topology of the space ${cal X}_{1}=:{cal D}^{1,2}({mathcal{R}}^{N}) times L^{2}_{g}({mathcal{R}}^{N}).$ We succeed to extend some of our earlier results concerning the asymptotic behaviour of the solution of the problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the dimension of the global attractor for an abstract semilinear hyperbolic problem

We study a semilinear hyperbolic problem, written as a second order evolution equation in an infinite-dimensional Hilbert space. Assuming existence of the global attractor, we estimate its fractal dimension explicitly in terms of the data. Despite its elementary character, our technique gives reasonable results. Notably, we require no additional regularity, although the nonlinear damping is all...

متن کامل

Strong Global Attractor for a Quasilinear Nonlocal Wave Equation on R

We study the long time behavior of solutions to the nonlocal quasilinear dissipative wave equation utt − φ(x)‖∇u(t)‖∆u+ δut + |u|u = 0, in RN , t ≥ 0, with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x). We consider the case N ≥ 3, δ > 0, and (φ(x))−1 a positive function in LN/2(RN ) ∩ L∞(RN ). The existence of a global attractor is proved in the strong topology of the space D1,2(RN )×...

متن کامل

A Note on the Nonlocal Boundary Value Problem for Hyperbolic-parabolic Differential Equations

The nonlocal boundary value problem        d 2 u(t) dt 2 + Au(t) = f (t)(0 ≤ t ≤ 1), du(t) dt + Au(t) = g(t)(−1 ≤ t ≤ 0), u(−1) = αu (µ) + βu (λ) + ϕ, |α|, |β| ≤ 1, 0 < µ, λ ≤ 1 for differential equation in a Hilbert space H with the self-adjoint positive definite operator A is considered. The stability estimates for the solution of this problem are established. In applications, the stab...

متن کامل

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Global Attractor for a Parabolic-Hyperbolic Penrose-Fife Phase Field System

A singular nonlinear parabolic-hyperbolic PDE’s system describing the evolution of a material subject to a phase transition is considered. The goal of the present paper is to analyze the asymptotic behaviour of the associated dynamical system from the point of view of global attractors. The physical variables involved in the process are the absolute temperature θ (whose evolution is governed by...

متن کامل

On a Nonlocal Eigenvalue Problem

We consider a nonlocal eigenvalue problem which arises in the study of stability of point-condensation solutions in some reaction-diiusion systems. We give some suucient (and explicit) conditions for the stability in the general case.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 2

صفحات  159- 168

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023